Robust_Prover
本文最后更新于 2025年9月18日 早上
Robust_Prover
├── README.md
├── .git/
├── .gitattributes
├── .gitignore
├── .venv/
├── Data/
├── Documents/
└── Scripts/
Robust Mathematical Problem Solver
flowchart
subgraph Prepare
A(Natural Language Question) --Filter --> C[/Natural Language Question/]
C'[/Natural Language Answer/]
C -.-> C'
end
subgraph Solve
D[/Lean Language Question/]
D'[/Lean Language Answer/]
F[/Answer & Feedback/]
G{Correct?}
H[/Final Answer/]
C --> D
D --> D'
C -.-> D'
C' -.-> D'
D' -- check --> F
F --> G
G -- Yes --> H
G -- No --> fix --> D'
end
H -.-> I(Natural Language Answer)
Info
Programme Cohort: Large Language Models & Generative AI
Course Group: GEA-Group 2
Group Name: Robust Mathematical Problem Solver
Group Members: Liu Peixuan, Long Haobo, Cao Shuhan, Wu Jiayu, Wu Xuanyu, Wei Yanran, Jin Huiyan
Slogan: Logic. Rigor. Automation.
Proposed Workflow
- Preprocessing for interference removal
- Generate natural language reasoning
- Formalize into proof language (e.g. Lean) for automated verification
- Adjust based on feedback
Extension directions:
- Fine-tune models for better task performance
- Design workflows optimized for formalization from existing papers
Development Team:
- Anti-interference implementation (Python) - Long Haobo
- Natural language reasoning generation & transformation (LLM & Agent) - Cao Shuhan
- Auto-correction implementation (Agent) - Wu Jiayu
Data Team: - Math problem dataset collection - Wu Xuanyu
Evaluation Team: - Test framework & metrics - Wei Yanran
- Results analysis - Jin Huiyan
Coordination Team: - Progress tracking & documentation - Liu Peixuan
Key References
- DeepSeek-Prover-V2: Advancing Formal Mathematical Reasoning via Reinforcement Learning for Subgoal Decomposition
- Cats Confuse Reasoning LLM: Query Agnostic Adversarial Triggers for Reasoning Models
- A Language-Agent Approach to Formal Theorem-Proving
- An In-Context Learning Agent for Formal Theorem-Proving
- Prover Agent: An Agent-based Framework for Formal Mathematical Proofs